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The problem of stabilizing the steady-state motions of a nonlinear controlled system in 

the critical case of two zero roots is considered. The problem is solved by a method 

based on the theory of motion stability [l to S] and by the techniques developed in p to 

91; a nonanalytic\control is used. This problem is considered in [lo] in the case where 

the double zero root-is associated with one group of solutions of the first approximation 

of the initial system. Here we consider the second case, where two groups of solutions 
are associated with this root. 

1, Let us consider the perturbed motion of a controlled object described by the system 

dy -- & --Ay+Bu+g(y, u) (y E iHn+% 24 E ( Rrn)) (1.1) 

Here y is an (n +-2)-dimensional perturbation vector ; I.4 is the ??J -dimensional vector 
of the control, which we assume to consist of unperturbed disturbances ;A ,B are constant 
matrices of dimensions (n + 2) X (n + 2) and (n + 2) X m; g fy, u) are analytic non- 

linearities in &‘, I& . All of the coefficients of Eqs. (1.1) are assumed to be real. 
Let the unperturbed motion &’ = 0 of system (1.1) for U 3 0 not be asymptotically sta- 

ble. We can then pose the problem of stabilizing motion (1. l), i.e. of choosing a control 
U = U( E/) such that its substitution into (1.1) renders the unperturbed motion @ = 0 asymp- 

totically stable in the Liapunov sense. 
Let us make use of the definition of [8] and consider the critical case of a double zero 

root, and specifically the second subcase in which two groups of solutions correspond to 
the double zero root In the case the systems of equations of the fit approximation 

admit of two independent linear integrals with constant coefficients. 3y means of the 

nondegenerate transformation of variables whose matrix can be constructed (see p to 3 
and 81) by taking these integrals as the new variables 5, q and writing 3;/1 = ~1 ( i = 1,. 
. . ,7%) , we can reduce system (1.1) to the form 

dktdt = .X (4, 9, z, u), dqidt=Y (C, rl, xr u) (1.2) 

dx I dt = Aox + L&u + aE + bq + Z (5, % x, 4 (i-3) 

Here 5, TJ are scalars ; .?.? is an n-vector ; a, b are n-vectors&, is a constant n X n 
matrix ; B, is a constant n X m matrix ; X,U, 2 are analytic nonlinearities in 8, ‘1, I, u. 

After this transformation the stabilization problem for system (1.1) becomes equivalent 
to the same problem for system (1.2), (1.3). 

As we know, the system 
dx I dt = A,x -I_ B,u. (1.4) 
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satisfies the stabilizability condition [8], so that we can construct for it a linear control 

of the form u* (2) = Px (1.3) 

(where P fs some constant m x n-matrix). 
By suitable choice of control (1.5) for system (1.4). all of the eigenvalues 1-11 of the 

matrix A, +Bz = const satisfy the condition 

R,P,i < 0 (i = i,..., n) (1.61 

Let us have a nonanalytic control of the form [9] 

z* -Z sign z = 
( 

1 for z > 0 

- 1 for 2 < 0 ( 

j=1,. . ,m 

s>,O, k>@ ) 

Setting p = y = 0 in (1.7). we obtain an analytic control. In this case the stabilization 

problem for system (l.Z),(l. 3) can be solved by any of the methods of analysis known 
to us from stability theory [3 to 51. Subjecting the coefficients of the series in (1.7) to 

the condition a,ejpl = aolijl = 0, we obtain a continuous control. 
We shall consider a nonan?alytic control for system (1. P), (1.3) Nhich broadens substan- 

tially the possibilities for stabilization. 

2. We shall make use of the Theorem [3] (see also [S]) known as the “reduction prin- 
ciple”. This theorem will enable us to reduce the solution of the stability problem for 
complete system (1.2), (1.3) to the consideration of some “shortened” system correspond- 

ing to two zero roots. Let us formulate the reduction principle for our case. Substituting 

the controlU(~,r).x) (1.7) intosystem(l.2),(1.3).weobtain 

d6 i dt = X’ ce, q, 4, dq / dt E Y’ (Es % 4 (2.4) 
dx / dt = (A, + B$)r + 2’ (E, q, 2) (2.2) 

Rejecting all terms containing xi in the right-hand sides of Eqs. (2.1). we obtain the 
shortened system dE 1 dt - X’ (E, 1, Oh dq / dt = Y’ (6, rl, 0) (2.3) 

Let us assume that in the expansions of the functions x’, y’ (2.1) the lowest order of 

the terms dependent on xi (5 = 1, . . . , n) is Q , while the lowest order of these terms 

inxi is rgq . 
Theorem 3.1. Let us assume that the unperturbed motion 5 = ?J = 0 for shortened 

system (‘2.3) is stable, asymptotically stable.or unstable regardless of the terms of order 

higher than N . Then, if the expansion of the vector .L?‘( 5, II, 0) begins with terms of 
order not lower than pP where 

P>, 
N+l-qfr 

r (2.4) 

then the unperturbed motion c = ?J = XI = 0 for complete system (2.1),(&a) is stable, 
asymptotically stable, or unstable, respectively. 

The proof of the theorem will not be given here, since it is essentially a repetition of 
the proof of the theorem for an analytic system p]. 

In order to make it possible to apply the reduction principle to system (‘L. 1).(3,2) we 
must reduce these equations to a form for which the expansions of the functions 
z’(s, q, 0) would begin with terms of suf~cienUy high order. To do this we carry out 
the Liapunov transformation 

xi = vi‘ + “1 (; = I,..., n) (2.5) 
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Here Vi (5, ?J) are entire rational functions of the variables 5, T/ satisfying the sys- 

tern of partial differential equations 

+ (41 “(1, 8, a) -t $ y (E, n* v, u) = ‘408 + Bou + aE + btl +,z ce, ‘1, u* u) (2.6) 

where V is an n-dimensional vector. If control (1.7) is analytic (i. e. for p = q = 0) , 
then system (2.6) has a unique solution [3]. In the case of a nonanalytic controlU (5.q ,V) 

in Formula (1.7). we substitute this control into system (2.6) and seek the solution of the 
latter in the form of formal series 

(2.7) 

System (‘2.6) can be solved by the method of undetermined coefficients. Substituting 
(-2.7) into (2.6) we obtain linear algebraic systems of equations for determining the coef- 
ficients ae& , The determinant IA, + BoP 1 of these systems is not equal to zero by 

virtue of (l&l) (see [3 and 81). These equations make it possible to determine succes- 
sively all of the coefficients c&,, in the expansions of the quantities Vi in such a way 

that Eq. (9.6) is satisfied identically in 5, ‘IJ, 5,‘ ?&. Such series (2.7) for system (‘2.6) 
always exist and are completely defined t~oughout the space. 

If we are able to compute the continuous solutions ZJ1 (2. ‘7) for system (2.6) to within 
terms of order S + ?Cs (p - 1) , then, substituting (8.5) into (B. 9) and setting z& 5 0, we 
find that all of the terms of order lower than p in 5 , q must vanish, Thus, system (P. l), 
(2.2) can be transformed into a system which satisfies the conditions of the theorem. 

On substituting Eq. (1.7) into Eqs. (2.1) and replacing the vector x by the vector V 

(2.7). we obtain the shortened system in the form (2.6) 

&’ - .zz 
dt 

x, (El r-l) + J&n+1 (ET rl) + ***r d;t = Y, (f3, q) + Y,il (E, q) + . . . (m >, 2) 

Here Xi (5, ‘n), Ylt ff, 9) (i =mzt m + I,...) are 6th order forms given by 

-qce*1?,= i c 

1 

z~;~$&f4*"tl*Q. Y*(E, 9)= yJ -j-J h& ~sl~k~*%Q 

p. q=o q-h=+ p. q=d s+-r=i (2.9) 

Lec’us subject the coefficients of these forms to continuity conditions, i.e. 

rJ?, = zo& = 0, k& = n#& = 0 (2.10) 

The remaining coefficients I&, h,,gi d epend in a certain way on the coefficients 

c&~ in (1.7). 
System (‘2.8) results from system (I.S),(l. 3) by way of the transformation (2.5) if we 

set wi - 0 and reject all of the equations associated with noncritical roots. Thus, accord- 
ing to the reducibility principle for the solution of the stability problem for complete 

system (1, i?) and (1.3), it is sufficient to consider critical Eqs. (2.8). 
Let us construct two forms of order m + 1 

pm+1 (El ‘11 = D-?n (5, 11) + W7n (E, rl), @ii) 

Qm+l (E? 11) - EYtn (5, rl) - rl.J.?n (5, ri) (2.12) 

5, First let us assume that the forms 8 m+l ( 5, ?J) are not of sign definite. In this case 

Eq. Qm+l'A 7f) = Wm 65 ~1) - qxm (E, q) = o (3.1) 

has real solutions for 5 , ?l which are not simultaneously equal to zero. Eq. (3.1). whose 
left-hand side contains functions of the form (2.9), defines one or several broken straight 
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lines with a salient point at the origin. Let us confine ourselves to those controls (1.7) 

for which transformation (2.5) is continuous and which satisfy condition (2.10) for func- 
tion (2.9). Then, by virtue of the continuity of the velocity field for homogeneous equa- 

tions, dE I dt = &,, (E, q), dn 1 dt = Y, (f, tl) (3.2) 

every integral curve of these equations which passes through the origin is tangent to one 
of the broken straight lines (3.1). This is because, by virtue of definition (2.11) of the 
form Qrn+l (5, q), on each Zinc we have the identity 

5 dq / dt - q dg I dt = 0 

Let us require that the condition 

pTn+1 (f, ‘I) = &X, (E, sI) + llym (&, ‘1) = - r (E* rl) 

be fulfilled for form (2.11). 

(3.3) 

Here 7( 5, q) is a positively defined function from the class (2.9) which can be taken 

in the form PI T (5, ?) = 2 ptj(m+l) (w+)i (qqe,j (&j’“+“> 0) (3.4) 
i+j=m+l 

The Liapunov function satisfying the theorem on asymptotic stability can be construc- 

ted in the form 2v = Es + 51s (3.5) 

Let us construct the total derivative of this function. By virtue of Eqs. (3.2) we obtain 

&’ 1 dt = Pm’+ r (E, 11) 

According to the choice of form (3.3) satisfying conditions (3.4). the derivative d I/ldt 
assumes only negative values on each broken straight line. Thus, the following statement 

is valid [3 to 53. 
Theorem 3.1. The stabilization of system (‘2.8) is guaranteed by control (1.7) 

if the coefficients akw, pij m-f-’ can be chosen in such a way that form (2.11) is not of 

sign definite and that conditions (2. lo), (3.4) are fulfilled. 

Note. If m = B in (2.8). then the function 7( 5, ?J) can be more general than (3.4). 

i.e. 
r(S, ri)= I E I 2 cijfid + I’1 I 2 Cij*hj (i 2 0, i > 0) 

{+i--2 i+j--2 

where 1s 1 = 55. i s an absolute quantity, and the coefficients satisfy the Sylvester 

inequalities 
%o > 9, 4.%OCO% - Cll’ > 0, Go’ > 9, 4.ceo*h+ - crl+a > 0 

Now let us prove the following theorem. 
Theorem 3.2. If form (2.11) can assume positive values on even just one half- 

line of the broken straight lines defined by Eq. (3. l), then system (2.8) cannot be stabi- 
lized by means of control (1.7). 

Proof. Without limiting generality we can assume that this half-line is the positive 
axis 5 . In this case the following relations must be fulfilled for ?J = 0 and 5 > 0 for 
coefficients (2.9) 1&)+1&I>0, h&I + h&)) = 0 (3.6) 

The Chetaev function corresponding to system (2.8) can be taken in the form 

2V = E’k - na (k > 0 and is an integer) (3.7) 

By virtue of Eq. (‘2.8) the derivative d Udt is then given by 

dV / dt = kg2’-‘X,,, (8, ‘1) - rly, 6 9) + _.* (3.8) 

Let us consider the domain (0) : 5 > 0 and 1 q 1 s ck. The function V in the domain 
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(B ) is v 2 0 . The sign of the derivative d f//d2 is given by Expression 

k (I,,,$~ + &$‘j) tax - (h,,$;i,o + h,,,!&,) $ 

In the domain (i?) under condition (3.6) even a sufficiently large k is always posi- 
tive for all coefficients a&e (1.7). Thus, the constructed v (3.7) satisfies all the con- 
ditions of Chetaev’s theorem on instability [3 to 53. 

4, Let us consider the case where the form g ,,,+1( 5, ?J) is of sign definite. In accord- 
ance with the sign definite requirement for functions from the class (5.9), we take (2.11) 
‘in the form 

Q,+I(Er q)= -&j@+" (~~*)*~q~*)j (i+j=m+I) (4.1) 

The coefficients $‘+” in (4.1) which are to be determined will be chosen in such 
a way as to guarantee ful~llment of the conditions 

r. .lrn+l) > 0 Xl or 7,j(m+1) < 0 (4.2) 

The homogeneous functions Xi, Yi, P,,,+l, Qm+l are here more conveniently written 
as Xf (E, rl* IEl,'Irll)1 Yf (E, % I&It 19lh*.* (4.3) 

By means of the substitution g = r cos 9, n = r sin 6 fr >, 0) we transform system 
(2.8) for (-2.10) into 

dr / dt = rmPm+l (COS 8, sin 6) + rm+lP,,,+z (COS 8, sin 8) + . . . (4.4) 
d0 I dt = r”-IQm+l (co9 8, sin 6) + pmQm+a (~0s 9, sin 6) + . . . (4.5) 

Here Pm,.i (e), Qm+i (0) (i = 1, 2 ,...) are functions of c_os 8 , sin@ of the form (4.3). 
Their cceff%cients depend on a&,s as in (1.7) and on y\y’) as in (4.1). 

Let us first consider the case where srr 

g-2: 

l Pm+l (co9 0, sin e) 
-- 

s Qm+l (cos 8, sin 6) de # o (4.6) 
0 

On the basis of one of the properties of periodic functions we have 

’ Pm+,(cos8, sine) 

s o Qm+l(cos.6, sine) de=@i-f(e) (4.7) 

where f( 8 ) is a continuous periodic function by virtue of the sign definite property of 
the function Qu+1(8 ).. We introduce the new variable 

a = &(a) (4.8), 

As our Liapunov action in this case we can take 

V =z (2 >i 0) 

By virtue of Eqs. (4‘ 4) ‘(4.5) and (4.8) the ‘derivative ~~/d~ can be written as 

dV/dt = gQ,l (cm 0, sin 6) znze(m-l)‘(e) + zm+lpm+; (6) + . . . 

where p",+l( 8) is a function of the form (4.3) in case , sine . We can therefore draw 
the following conclusion p to 51. 

The ore m 4.1. Stabilization of system (‘2.8) is assured by control (1.7) if the coef- 
ficients a& and r{y’) can be chosen (provided (2, lo), (4.2) are fulfiIled) in such a 
way that the inequality g_Q,,,+r (GOS 8, sin 8) < 0 is satisfied. If the inequality 
gQ,+, (co9 0, sin 0) > 0 is’ fulfilled for any choice of the coefficients cc!,,, yiT1) then 
stabilization by means of control (1.7) is impossible. 
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Now let us consider the case where the constant g = 0 . Making the substitution 

p = re-‘@), we convert system (4.4). (4.5) to the new variable, We then eliminate d t 

from the resulting equations to obtain dP 
~=Ps~¶~6)+p~~s(e)+. . * (4.9) 

where Xz( 8 ) is a function of cos 8 , sin 8 of the form (4.3). We shall attempt to find 
the solution of Eq, (4.9) in series form 

p =I E + es4 (6) + 8% (6) + l ** (P (6, c) - c) 
Here c is an arbitrary constant and Ui (8 ) is a periodic function of 8 defined by Eqs. 

duafde = 4 03) = 4 m dual de = 4 68 + 2% 69 5 (8) = h (eb.. 

IfU,(8) (k<N-1) is the first nonperiodic function in the sequence Uz , ~43 , . . . , 
then it is of the form 

“& (6) = g*8 + G (6) (&-*=j$ &(*)dB+Oj 

where G( 8) is a periodic function. 
U 

This immediately implies 12 and 3 to 51 the validity of the following theorem. 
The orem 4.2. If (provided conditions (2.10),(4.2) are fulfilled) the coefficients 

i 
aSkpQ* Yij (m+l) can be chosen in such a way as to guarantee fulfillment of the inequality 

g+ Qm+z (0) < 0, then the stabilization of system (2.8) by control (1.7) is assured. If 

the inequality g* Qrnel (0) > 0 is fulfilled for any chosen coefficients a&r, yiy’j, 

then system (2.8) cannot be stabilized by means of control (1.7). 
The author is grateful to V. V. Rumiantsev for his valuable suggestions. 
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